

Superconducting Power Systems (2314011)

(Winter term 2022/2023) **#01 – Introduction and Motivation**

Prof. Dr. Tabea Arndt

Content

- House keeping
- Introduction
- KIT and ITEP— where, who, what?
- Lecture contents
- Let's get started why superconductors?

\rightarrow House keeping

House keeping

- News, documents, files, etc. (when sufficiently compact in data volume): \rightarrow ILIAS
- Winter term 2022/2023: aiming for in person lectures
- Lectures:
 - as planned according itinerary
 - fall back in case of (rare) unavailability: recordings or MS TEAMS
- Exam:

There is an (oral) joint exam of "Superconducting Magnet Technology (Summer Term)" & "Superconducting Power Systems (Winter Term)"

This is a joint lecture and to best knowledge there is no option for a separate exam.

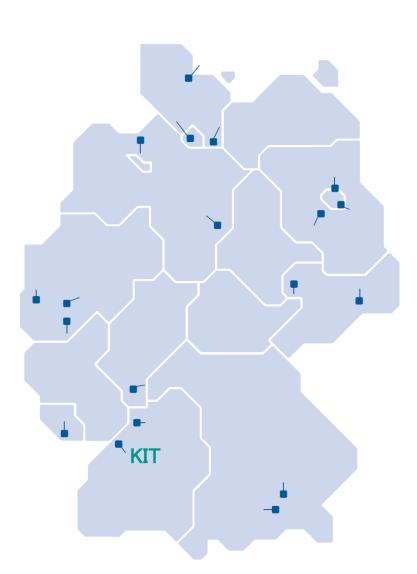
Timeslots (weeks) for exams will be communicated later and usually near starting/ ending dates of lecture periods.

Introduction \rightarrow

Introduction Tabea Arndt

- grown-up in Niedersachsen, Germany
- Study, Diploma and PhD in Physics, University Karlsruhe (TH)
- Vacuumschmelze GmbH&Co.KG, Hanau
- ...different carve outs
- Bruker BioSpin
- Siemens Corporate Technology
- KIT ITEP

Tel.: 0721-608-23515 Email: Tabea.Arndt@kit.edu


Introduction to first lecturer.

Introduction large scale research/ HGF...

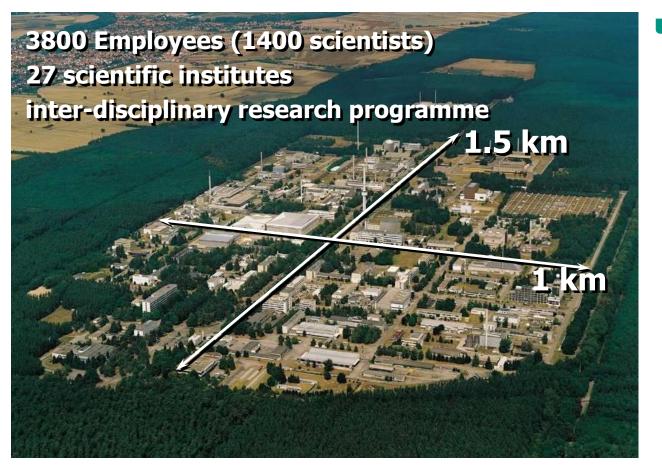
Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

The Helmholtz association on Large Scale Research (HGF)

CISPA	Helmholtz-Zentrum für Informationssicherheit, Saarbrücken		
DLR	Deutsches Zentrum für Luft- und Raumfahrt, Köln		
FZJ	Forschungszentrum Jülich		
KIT	Karlsruher Institut für Technologie		
DKFZ	Deutsches Krebsforschungszentrum, Heidelberg		
DESY	Deutsches Elektronen-Synchrotron, Hamburg		
DZNE	Deutsches Zenrtrum für Neurodegenerative Erkrankungen e.V., Bonn und 9 Standorte		
IPP	Max-Planck-Institut für Plasmaphysik, Garching (assoziiert)		
GEOMAR	Ozeanforschung, Kiel		
HMGU	Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit & Umwelt, Neuherberg		
AWI	Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven		
GSI	Gesellschaft für Schwerionenforschung, Darmstadt		
UFZ	Helmholtz-Zentrum für Umweltforschung, Leipzig		
MDC	Max-Delbrück-Centrum für Molekulare Medizin, Berlin		
GKSS	Forschungszentrum Geesthacht		
HZB	Helmholtz Zentrum Berlin für Materialien und Energie		
GFZ	GeoForschungszentrum, Potsdam		
HZI	Helmholtz-Zentrum für Infektionsforschung, Braunschweig		
HZDR	Helmholtz-Zentrum Dresden-Rossendorf		
HZG	Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung		

ITEP-events on superconductivity...

ITEP-events (selected)


Summer term	Title		Responsible	Faculty	Institute
2312698	Superconducting Magnet Technology		Prof. Arndt	ETIT	IMS (ITEP)
2312684	Projektmai	nagement für Ingenieure	Prof. Noe	ETIT	IMS (ITEP)
2312704	Supercond	luctors for Energy Applications	Apl. Prof. Grilli	ETIT	IMS (ITEP)
2312687	Energy Sto	brage and Network Integration	Apl. Prof. Grilli, de Carne	ETIT	IMS (ITEP)
2312691	Superconductivity for Engineers		Prof. Holzapfel Prof. Kempf	ETIT ETIT	IMS (ITEP) IMS
2312692	Tutorial for 2312691		Wünsch, Stefan	ETIT	IMS
2312696	Superconducting Materials Part II		Prof. Holzapfel	ETIT	IMS (ITEP)
2310542	Seminar on Applied Superconductivity		Prof. Arndt Prof. Holzapfel Prof. Kempf	ETIT	IMS (ITEP) IMS (ITEP) IMS
				Inotituto	
Winter term Title		l itie	Responsible	Faculty	Institute
Seminar (one full day)		Netzwerken-Optionen schaffen Freiheiten	Prof. Arndt	HoC	ITEP
Seminar	Seminar Strategieableitung für Ingenieure		Prof. Arndt	ETIT	ITEP
Practise Robotic Winding of superconductors		Prof. Arndt	ETIT	ITEP	

Campus North...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Campus North

The ITEP is located at CN as being part of the large scale research of Germany.

research at ITEP...

7

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Superconductivity

Superconducting and Cryomaterials	Energy Applications	Superconducting Magnet Technology	Fusion Fuel Cycle Technologies
Holzapfel	Noe	Arndt	Day
Superconducting Materials	Superconducting Power Systems Components	Coil and Magnet Technology	Vacuum Technology and Process Development
Conductor Concepts and Technologies	Modelling of Superconductors and Components	High-Current Components for H_2 and Fusion	Rarefied Gas Dynamics
Materials for Cryogenic Applications	Real-Time System- Integration	Rotating Machines	Vacuum Hydraulics and Hydrogen Separation

Superconducting & Cryomaterials...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Superconducting and Cryomaterials

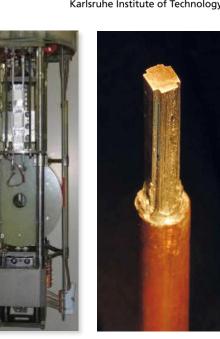
Holzapfel

Superconducting Materials

Conductor Concepts and Technologies

Materials for Cryogenic Applications

Superconducting Materials



Ion beam assisted deposition chambers

Reel to reel chemical solution deposition

FBI cryogenic

material tests

YBCO Roebel cables

HTS CroCo (CrossConductor)

Development of ReBCO superconducting tapes Investigation of cryogenic properties of structural materials High current and low loss conductor and wire concepts

Energy Applications...

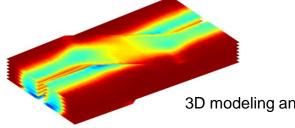
Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Institute for Technical Physics (ITEP)

9

Energy Applications

Noe


Superconducting **Power Systems Components**

Modelling of Superconductors and Components

Real-Time System-Integration

HTS fault current limiter

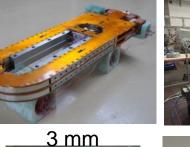
HTS high current cable model

3D modeling and simulation

Development of HTS Power System and new Applications (Cables, FCL,) Simulation and modeling of HTS tapes and devices Operation and development of large scale cyrogenic systems Development of real time system integration of new network technology

Superconducting Magnet Technology...

Superconducting **Magnet Technology**


Arndt

Coil and Magnet Technology

High-Current Components for H_2 and Fusion

Rotating Machines

From Research Fields to (actual) projects...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Actual projects at ITEP (selected)

- AppLHy!
- COST
- Demo200
- (HighAmp)
- (Jp-PTL)
- MEESST
- SuperLink
- SupraGenSys
- several funded research projects in application (accelerators, Wind Power)
- several contract research projects (CERN, industrial players)
- SFB Hyperion: miniaturized NMR magnets

research \rightarrow application Contents of this lecture series...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Contents of lecture series

Date Title	Lecturer	Remark
25.10.2022 Introduction & Motivation	Arndt	To raise interest
08.11.2022 Basics of Superconductivity	Grilli	Meissner-Ochsenfeld effect, Type 1 and type 2 superconductors, magnetization, losses, sc. wires
15.11.2022 Sc. Cables and Busbars 1(3)	Kottonau	AC cable types, operation parameters
22.11.2022 Sc. Cables and Busbars 2(3)	Kottonau	DC high current busbars, state-of-the-art
29.11.2022 Sc. Cables and Busbars 3(3)	Kottonau	Design example and comparison with conventional cables
06.12.2022 Sc. Transformers 1(2)	Fotler	Basic design, main parameters, operation behaviour, design equations, losses, state of the art
13.12.2022 Sc. Transformers 2(2)	Fotler	Design example for superconducting railway transformer
20.12.2022 Sc. Fault Current Limiters 1(3)	de Sousa	Motivation, resistive type, conceptual design, simulation tools, design task
10.01.2023 Sc. Fault Current Limiters 2(3)	de Sousa	Round of questions for design task
17.01.2023 Sc. Fault Current Limiters 3(3)	de Sousa	Presentation of design proposals
24.01.2023 Sc. Rotating Machines 1(2)	Schreiner	Basic design, operation parameters, synchronous machines, applications, state-of-the-art
31.01.2023 Sc. Rotating Machines 2(2)	Schreiner	Design example of DC wind power generator demonstrator
07.02.2023 Sc. Magnetic Energy Storage	Pham	Design and function, main parameters, operation behaviour, design equations, losses, state of the art
14.02.2023 Basics of Cryogenics	Pham	Cooling systems, cooling fluids and materials, basic design of cryostats, optimization of current leads, general design, basic design equations, state of the art

The topics in more detail...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Topic: Introduction and Motivation

Hoechst High Chem

Können Supraleiter Hochspannungsmasten wegzaubern?

Auch weste die blee, Hoeb

 H_{*} homomotinesen

heschähligen nicht mer kleine Drachenhandigen Zwar urbählen nie frei Jahasserichtige Aufgahle, Streien überaft hie zu reampartieren, wie zuverlässig, Aber-Tare ektissemagenische Strahlerg wird homosreen diskutien, und für umerer Landichtieren sind im gestä keine Ziet Tarpeleitunde Stronkalst wirten eine Ahrmanzen, die richt

Menalis biene, Na sugregardiren Strom widerspendetes, das proktisch ober Tamgerschen, and dawit wirtschahlichen Zadart bienersy sic, mis im Bathengentamme verlager, kom versionelle habel ande, omer indicel verbaden.

 quemangeleitungen durch Sepreleiter in ersettere, haare noch skrivetiver Charakore har – elle in herischus Grandlagen externren hawin.

Hondrei achnine ait 1986 inionnis and done Galines der Sogenbritang, Wir Index Marentalian erweisicht, die Soreite bei Jackert Temperaturen von Hill C. in soperaktionden Zommel Beigebort demit Auser man Dissiger Kubberd als beisengebeitiger Kubberd als beisengebeitiger

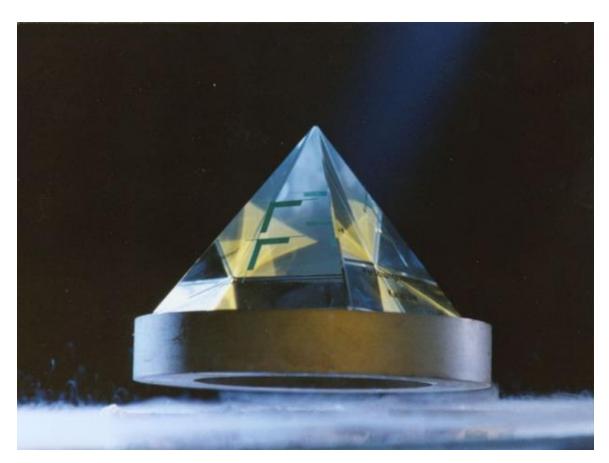
her, she Lind we hake Wag griandes, her, so p. kon unner

 disse Manerialian na Perreta-lan sia DisSiana, Solisso oder Sicher av ventheinen, Er Samunladielt, diser auch in Maneren, Compotore und meditarischen Geriaue istend Anthen Stream drae Vitersianen der Latimergeffläglich, Winnerhaldlichkeit einfläglich, Winnerhaldlichkeit einfläglich, Winnerhaldlichkeit einfläglich, Winnerhaldlichkeit einfläglich, Winnerhaldlichkeit einfläglich, Nom the an einteren Indexnationen ein dissent Themas interessent aud, interchen Se ann, oder

Tel. 31 St. 508. Hercher M., heldervise 4926 Fuelder om Main

rolen Sie gebührunfist an:

Hoechst


Just a teaser. Basics...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Topic: Basics of Superconductivity

- Critical quantities
- Meissner-Ochsenfeld Effect
- Type 1 and Type 2 superconductors
- Magnetization
- Losses
- Superconducting wires
- Current transport

Foundation. Cables...

Topic: Superconducting Cables

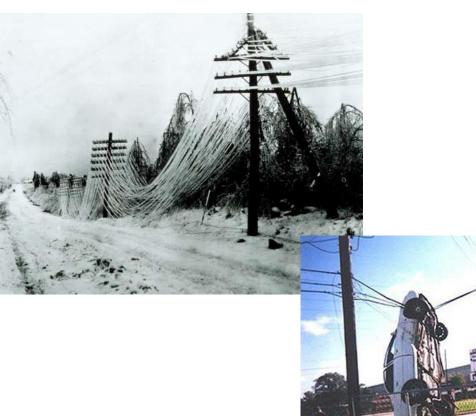
- Design
- Dielectric
- Cable types
- Operating parameters
- Transmission behavior
- Examples
- Cryogenics at high voltage levels

Efficient bulk transport of electric energy. Transformers...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Mexens Inducting Pow 12P ky - 2400 B

Topic Superconducting Tranformer



- Design and operating principle
- Parameters
- Operating behavior
- Design equations
- Losses
- State of development

To taylor transmission and distribution.

Topic Superconducing Fault Current Limiter (FCL)

- Conventional methods
- Types of superconducting FCL
- Functionality
- Current limiting behavior
- Possible applications
- Economic aspects

New approach: Problem oriented learning

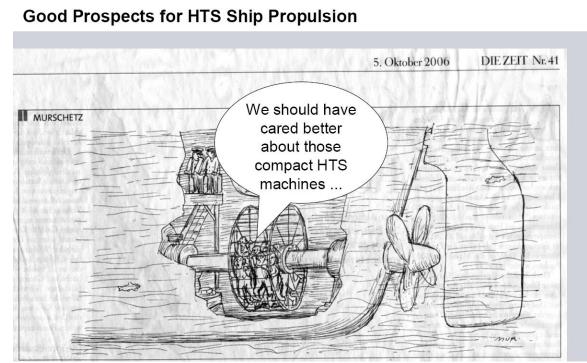
- You hate the task to design a sc. FCL
- First lecture: introduction to topic and simulation tools (Matlab and Python)
- Second lecture: teacher is your coach and anwers your questions
- Third lecture: you present your design

To handle fault currents.

Incident...

02.Sep.2022, Netherlands

- Transformer caught fire/ explosion (conventional one)
- Unfortunately, the control equipment & safety measures have been destroyed by the explosion, too.
- High Fault currents flowing through the OH-Line for more than one minute
- Elongation of OH-Line
- Touching the railway track
- Damaging the railway track seriously


A recent arguing in favour of SFCL.

Rotating machines...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Topic: Superconducting Rotating Machine

SIEMENS

Synchronous machine

Operating behavior

- Homopolar motor
- Linear motor

Design

- Reluctance motor
- Design parameters
- Applications
- State of development

Highly efficient and compact revolutions. SMES...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Topic: Superconducting Magnetic Energy Storage

© Original Artist Reproduction rights obtainable from www.Car<u>toonStoc</u>k.com

" WHILE YOU WERE OUT I SWITCHED ENERGY SUPPLIERS, DEAR ."

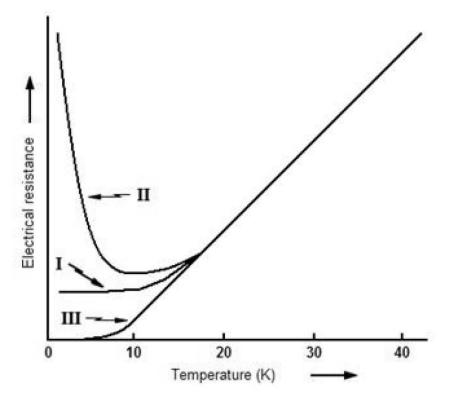
- Overview of conventional energy storage systems
- Mode of operation
- Properties of SMES
- Basic equations
- Application examples

Short term energy storage for high power demand.

Basics of cryogenics...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Topic: Basics of cryogenics


- Refrigeration
- Refrigerants (cryogens)
- Material properties at low temperatures
- Cryostats
- Safety

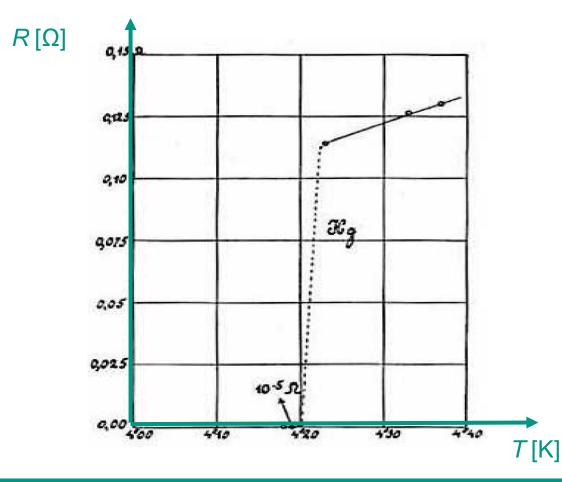
Keep it cold!

History of Superconductivity, the discovery...

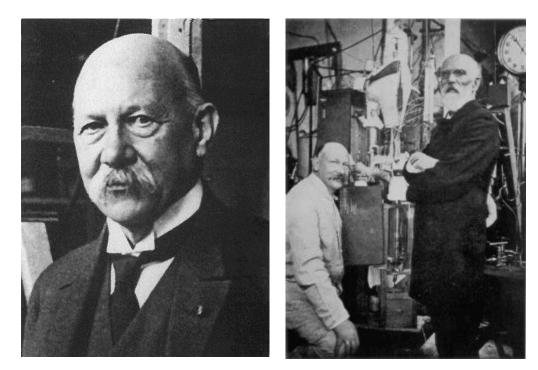
Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Discovery of superconductivity – electrical resistance vs. temperature

- I: impurities (Matthiessen 1864)
- II: freezing of charge carriers (Thompson/ Lord Kelvin 1902)
- III: freezing of collisions (Dewar 1904)


Figura 8 - Possible (qualitative) forms of temperature variation of electric resistance.

e.g. discussed for Pt and Au, taken from [S. Reif-Acherman-Rev.Br.Ens.Fisica 33(2011)2601]


3 possible scenarios for the low temperature behaviour were considered. Experimental observation...

Experiment of H.K. Onnes (1911) in liquid helium

■ Electric resistance drops for temperatures T< ≈4.2 K not slowly with a slope, but abruptly (no data points) to very small values!

"Thus the mercury at 4.2 K has entered a new state, which, owing to its particular electrical properties, can be called the state of superconductivity"

in the field of superconductivity

Heike John Kamerlingh Onnes Bardeen

Leon Neil Cooper

John Robert Schrieffer

Brian D. Josephson J. Georg Bednorz K. Alexander Müller Alexei A. Abrikosov Vitaly L. Ginzburg

1913-Low-temperature physics (e.g. superconductivity of Hg) 1972-BCS-Theory

(1973-Josephson-Effect)


1987-High-Temperature Superconductors 2003-Theory of Superconduct's

The discovery of High-Temperature Superconductors (HTS)...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Discovery of high-temperature superconductivity by Bednorz and Müller (IBM, Zürich, 1986)

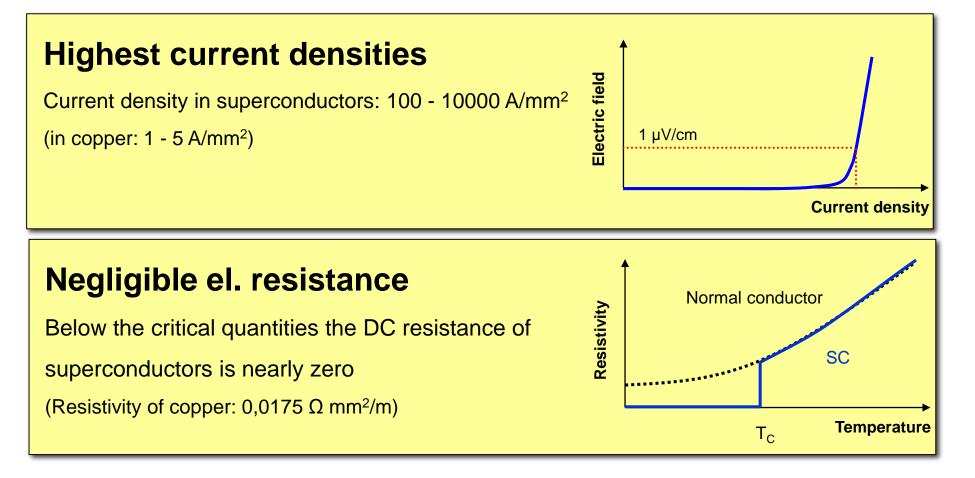
- First, $T_c \approx 40$ K
- Lateron, $T_c > 77$ K, so cooling with LN_2 instead of LHe possible

[J.G. Bednorz, K.A. Müller, "Possible High Tc Superconductivity in the Ba-La-Cu-O System, Z. Physik B., Condensed matter 64, 189-193 (1986)]

New prospects for energy technology! Historical development of HTS...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Historical development of HTS (selected)


- 1986 Discovery of high-temperature superconductivity by Bednorz and Müller: $(La, Sr)_2CuO_4$ with $T_c = 30...40$ K.
- 1987 Discovery of Y1Ba2Cu3O(7-X) (YBCO) with TC = 92 K.
- 1987 until now: Discovery of new materials and development of materials and applications e.g.: Bi2Sr2CaCu2O8 (BSCCO 2212 or Bi 2212) TC = 92 K Bi2Sr2Ca2Cu3O10 (BSCCO 2223 or Bi 2223) TC = 110 K
- 1996 in October: world's first inductive HTS FCL (10 kV, 60 A, 3 phase) in long-term test, Löntsch power station, CH
- 1997 in March: Grid operation of the world's first 3 phase HTS transformer with 630 kVA & 18.7 kV/420 V, Löntsch
- 2001 Discovery of MgB_2 with $T_c = 39$ K.
- 2004 in April: world's first resistive HTS FCL (10 kV, 600 A) in grid operation at RWE in Netphen (Germany)
- 2005 First commercial availability of YBCO 2G-HTS tapes
- 2008 Discovery of FeAs compounds with $T_c = 55$ K
- 2014 World's longest HTS cable in Essen, Germany (AmpaCity)
- 2018 World's first field test of HTS wind turbine (Ecoswing)
- and ongoing...

Many developments improved maturity to high TRLs.

Why HTS in power engineering?...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Superconductivity improves conventional technology and enables new applications! What does that mean in electrodynamics?...

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Electrodynamics: Maxwell Equations and Ohm's law for normal-conducting materials

Gauß' law	$\nabla \cdot \mathbf{E} = \frac{\rho_e}{\varepsilon_0}$	The electric flux leaving a volume is proportional to the enclosed charge. "The Charge is source of the electrical Field"
Gauß' law for magnetic fields	$\nabla \cdot \mathbf{B} = 0$	The total magnetic flux leaving a closed surface vanishes. "There are no sources of the magnetic field"
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	The rate of change of the magnetic field leads to an electric vortice field.
Ampere's law	$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$	Electric currents including the discplacement currents lead to a magnetic vortice field.

Ohm's law	$\mathbf{j} = \sigma \mathbf{E}$	Electrical current and electric field are proportional.
	$\mathbf{J} - \mathbf{OE}$	(constant is the electrical conductivity)

Frequently written as	$ne^2\tau$	<i>n</i> : density of charge carrier, <i>e</i> : elementary charge, τ : mean free path, <i>m</i> : masse of charge carrier
	j =E	

Maxwell is universal, Ohm is for material class. And how about superconductors?

"Superconducting electro dynamics" – Maxwell stays, but "London replaces Ohm".

Gauß' law	$\nabla \cdot \mathbf{E} = \frac{\rho_e}{\varepsilon_0}$	The electric flux leaving a volume is proportional to the enclosed charge. "The Charge is source of the electrical Field"	
Gauß' law for magnetic fields	$\nabla \cdot \mathbf{B} = 0$	The total magnetic flux leaving a closed surface vanishes. "There are no sources of the magnetic field"	
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	The rate of change of the magnetic field leads to an electric vortice field.	
Ampere's law	$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$	Electric currents including the discplacement currents lead to a magnetic vortice field.	
London- equation	$\dot{\Delta} = \frac{1101}{7} \nabla C$ $\frac{110}{7}$ and from the vector potential of the magnetic field		
Or in the form	$\frac{\partial}{\partial t}j = \frac{e^2n}{m}E$ $\nabla \times j = -\frac{e^2n}{m}B$	<i>n</i> : density of charge carriers, <i>e</i> : charge, <i>m</i> : mass of charge carriers	
	$\nabla \times j = -\frac{\sigma - \pi}{m}B$ Winter Term 2022 – Tabea Arndt – Supercor	Superconductors: "London replaces Ohm" ^{Inducting Pov} The new technical opportunities and impacts in deta	

Highest current densities with almost zero DC resistance ad high magnetic fields

Impact on energy technology:

Increased energy efficiency=reduced loss

Application examples	Loss reduction
Generators (several	30-40 %
MVA)	40-50 %
Generators (> 100 MVA)	
Transformators	
stationary	~ 50 %
mobile	80-90 %
Induction heating	~ 50 %
Magnetic separator	> 80 %
HTS current leads	70-80 %
HTS high field magnets	> 90 %

Increased energy efficiency!

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Highest current densities with almost zero DC resistance ad high magnetic fields

Impact on energy technology:

- Increased energy efficiency=reduced loss
- Higher energy density

Volume and weight reduction				
Generators 30-50 %				
Transformators 30-50 %				
Cable > 50 %				

Increased energy density!

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Highest current densities with almost zero DC

resistance ad high magnetic fields Impact on energy technology:

- Increased energy efficiency=reduced loss
- Higher energy density
- New technology and applications

Superconductivity offers

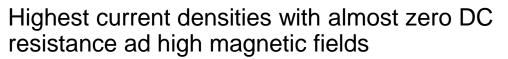
- Superconducting fault current limiter
- Current limiting systems
- Superconducting magnetic energy storage

New technology and applications!

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Highest current densities with almost zero DC resistance ad high magnetic fields

Impact on energy technology:


- Increased energy efficiency=reduced loss
- Higher energy density
- New technology and applications
- Improved grid quality

Higher grid quality

- Lower impedance of the equipment
- High short circuit power with current limiters
- Fast compensation of interferences with magnetic energy storage

Improved grid quality!

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

Impact on energy technology:

- Increased energy efficiency=reduced loss
- Higher energy density
- New technology and applications
- Improved grid quality
- Environmentally friendly

Liquid nitrogen

- as coolant and electric insulation
- broadly available
- not flammable

More friendly to nature!

Winter Term 2022 – Tabea Arndt – Superconducting Power Systems

References/ further studies

- Werner Buckel **Supraleitung**, VCH, 1994 (or later)
- P. Komarek **Hochstromanwendung der Supraleitung** (Teubner 1995 no reprint!)
- J.D. Doss Engineer's guide to high-temperature superconductivity, John Wiley, 1989
- Wilson Superconducting Magnets, Clarendon-Press, 1983
- H. Brechna Superconducting Magnet Systems, Springer, 1973
- J.C. Phillips Physics of high-Tc superconductors, Academic Press, 1989
- Bernd Seeber Handbook of Applied Superconductivity, Vol. 1 and 2, IOP 1998
- David A. Cardwell (Eds.) Handbook of Superconducting Materials
- Rosenberg Low Temperature Solid State Physics, Clarendon Press (1965)
- R.D. Parks Superconductivity, CRC Press, 1969
- Frey, H., Haefer, R.A.; Eder, F.X. (Ed.) "Tieftemperaturtechnologie", VDI-Verlag GmbH, 1981
- Jousten, K. "Handbuch Vakuumtechnik", Springer Vieweg, 2018

Learning objectives...

Learning objectives

- Motivation to use superconductors
- Difference in electrodynamics (Maxwell vs. Material laws)
- Most prominent applications for HTS in power engineering
- Benefits for HTS in power engineering

Thank you!

